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Abstract 
In this paper, properties of Bi-Exponential Receiver Operating Characteristic (ROC) curve and Area Under 

the ROC curve (AUC) of Bi-Exponential ROC model are discussed. The evaluation of AUC and its inference is a 

crucial part of ROC curve analysis. We proposed the estimation of asymptotic and exact variances for AUC of Bi-

Exponential ROC curve. The Confidence Intervals for AUC using asymptotic and exact variance methods are also 

proposed. The proposed methods are validated by extensive simulation study as well as real life example.  
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     Introduction 
In Medical diagnosis, a subject is 

categorized into either healthy or diseased based on 

some clinical measurement based on the selected cut-

off t. If the clinical measurement is ‘greater than or 

equal to’ t, then the subject is labeled as diseased and 

if the measurement is ‘less than’ t, then the subject is 

labeled as healthy subjects. The clinical 

measurements are often called as test results or test 

scores or Biomarker. 

 Let us denote the test results of diseased 

subject by the random variable Y with Probability 

Density Function (PDF), Yg (y)  and Cumulative 

Distribution Function (CDF), YG (y) . Similarly, let 

us denote the test results of healthy subject by the 

random variable X with PDF, Xf (x)  and CDF, 

XF (x) . Assume that X and Y are independent and 

continuous. 

 Sensitivity of the diagnostic test is defined as 

YG (t) P(Y t),   which is the probability of 

correctly categorizing a diseased subject when a cut-

off is given. Similarly, the Specificity of the 

diagnostic test is defined as XF (t) P(X t),   which 

is the probability of correctly categorizing a healthy 

subject. 

 Receiver Operating Characteristic (ROC) 

curve is defined as a plot of “True Positive Rate” 

(TPR), YG (t)  on the vertical axis versus the “False 

Positive Rate” (FPR), XF (t)  on the horizontal axis 

for different values of t, where t .  The 

mathematical model representing the ROC curve 

takes the form [8] 
1

Y X XROC[t] G F (t);0 F (t) 1                         (1) 

For an appropriate diagnostic test, the ROC 

curve should lie very close to upper left corner of the 

unit square. A typical ROC curve must satisfy the 

following properties. 

1. ROC curve is invariant with respect to monotone 

increasing transformation of the test scores. 

2. The test values of X are smaller than Y. 

3. ROC curve is monotonically increasing function 

i.e. 
X

dROC(t)
0.

dF (t)
  

4. ROC curve is said to be concave, if 
2

2
X

d ROC(t)
0

dF (t)
 and convex, if 

2

2
X

d ROC(t)
0.

dF (t)
  

5. The slope of ROC curve at any operating point is 

equal to the ratio of PDF of diseased to PDF of 

healthy at a particular cut-off point [8] which is 

given by 

      

g(t)
slope

f (t)
                            (2) 

6. Let KL(f ,g)  denote the Kullback – Leibler (K-

L) divergence [6] between the distributions of 

healthy and diseased group with f(x) as the 
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comparison distribution and g(y) as the reference 

distribution. Then 

       
D

f (x)
KL(f ,g) f (x) ln dx

g(y)

 
   

 
                       (3) 

    where ;  0 x ; D x y     

 y0 since the range of x and y are same, 

we can represent x and y by x itself. 

Similarly, let KL(g, f) denote the K-L 

divergence between the distribution of diseased 

and  healthy population with g(x) as the 

comparison distribution and f(x) as the reference 

distribution, then 

D

g(x)
KL(g, f) g(x) ln dx

f(x)

 
   

 
                         (4)

 

where D is the common range of f and g. It 

is to be noted that KL(f ,g) and KL(g,f)  are 

positive and KL(f ,g) = KL(g,f) = 0, if and only 

if    f x .g x These two measures tell us about 

the asymmetry of ROC curve about the negative 

diagonal. If KL(f,g) KL(g,f),  then the ROC 

curve is said to be TPR asymmetric and if 

KL(f,g) KL(g,f), then the curve is said to be 

True Negative Rate (TNR) asymmetric. 

Area under the ROC curve is the frequently used 

measure for quantifying the performance of the 

diagnostic test. It is defined as the probability that in 

a randomly selected pair of healthy and diseased 

subject, the test result of diseased subject is higher 

than the healthy subject. Mathematically, it is defined 

as 
1

Y X0
AUC G (t)dF (t).                           (5) 

The evaluation of AUC and its inference is a 

crucial part of ROC curve analysis. The estimation of 

ROC curve is done in three ways like Non-

Parametric, Parametric and Semi-Parametric. In this 

paper, we have studied the parametric approach of 

plotting ROC curve. 

In Parametric approach a specific distribution is 

assumed to X and Y with different parametric values. 

The conventional Bi-Normal ROC model assumes 

that X and Y or any monotone transformation of X 

and Y follow normal distribution with different 

parameters where the parameters with subscript ‘0’ 

represents healthy parameters and with subscript ‘1’ 

represents diseased parameter. 

The other distributional models that are 

considered in literature are Bi-Exponential ROC 

model [2], Bi-Gamma ROC model [4], Bi-Lomax 

ROC model [3], Generalized Bi-Exponential ROC 

model [7], Bi-Lognormal ROC model [1], Bi-

Rayleigh ROC model [9], [10], Bi-Weibull ROC 

model [11] and a review of all parametric ROC 

models in case of continuous data [12]. 

This paper is organized as follows: In Section 2, 

Bi-Exponential ROC model, its properties and ML 

estimation of parameters are discussed. Section 3, 

provides estimation of AUC, asymptotic distribution 

of estimated AUC and confidence interval for ˆAUC . 

In Section 4, exact distribution of ˆAUC  and 

confidence interval for ˆAUC  are discussed. The 

proposed theory is validated by simulation studies 

and real life example in Section 5. Section 6 contains 

the concluding remarks. 

 

Materials and methods 
Bi-Exponential ROC Model  

 

Let Z be a random variable that follows the one 

parametric Exponential distribution with inverse 

scale parameter λ is denoted by Exp (λ). It possess 

the PDF as 

z
Zf (z, ) e ;z 0, 0.               (6) 

The CDF of random variable Z is given by  
z

ZF (z) P(Z z) 1 e , 0     
                         (7)

 

Bi-Exponential ROC model which is given by [2] 

1

0
X X 0 1eROC(t) F (t) ; 0 F (t) 1,




                   (8) 

where 0  and 1  are the parameter of healthy and 

diseased group respectively, “eROC (t) “ represent 

the Bi-Exponential ROC model. 

Now, we will discuss some of the properties of eROC 

curve  

Properties 

1. eROC curve is monotonically increasing 

function. 

Proof: A function is said to be a monotone 

increasing function, if the first derivative of the 

function is positive. Since, the first derivative of 

eROC curve with respect to XF ( t ) is positive.  
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i.e.

  

1 1
1

0X
0X

deROC(t)
F (t) 0

dF (t)

 
   


   

          

(9) 

Hence, eROC curve is monotonically 

increasing function.

 

2. eROC curve is concave and never lies below the 

chance line. 

 Proof: From equation (9), the second derivative of 

eROC(t) is given by 

      

2 1 21 1
0X2

0 0X

d eROC(t)
1 F (t) 0

dF (t)

 
   

  
        

    

(10) 

The ratio 1

0




 

will always be less than zero since 

we assumed that   0 1 and hence the term 

1

0

1
 

 
 

0 and
1

0

2

XF (t) 0

 
 

    
since 

.1)t(F0 X   On the whole, we will get 

2

2
X

d eROC(t)
0

dF ( t )
 . Hence, eROC curve is concave 

in nature. Now, let us prove that it never lies 

below the chance line. 

ROC curve is said to be proper ROC curve 

if it never crosses the chance line or if the 

decision variable is a strictly increasing function 

of the likelihood ratio. Consider any two points a 

and b (say) where 0<a, b<1 on eROC curve. 

Since we have proved that the eROC curve is 

concave, the line segment connecting the point a 

and b never lies above the curve. If we take the 

extreme point i.e. a 0  and b 1,  it becomes the 

chance line, so the chance line also never lies 

above the curve. Hence we have proved that the 

eROC curve never crosses the chance line. 

3. The slope of the eROC curve at the threshold t is 

given by 

0 1{t( )}1

0

slope e
 




         (11) 

4. It is invariant with respect to monotone 

increasing transformation of the test scores. 

5. eROC curve is TPR asymmetric [6]. 

Proof: 

The K-L divergence between two exponential 

distributions has been studied by [6]. The K-L 

divergence between the distribution of diseased 

and healthy group with f(x) as the comparison 

distribution and g(x) as the reference distribution 

has been given as 

1 1

0 0

KL(f ,g) 1 ln
  

    
  

                      (12) 

Similarly, the K-L divergence between the 

distribution of healthy and diseased group with 

g(x) as the comparison distribution and f(x) as the 

reference distribution has been given as 

0 0

1 1

KL(g,f) 1 ln
  

    
  

                       (13) 

                       

 

It was found that 

KL(g,f ) KL(f ,g). These two divergence 

measures would be zero, if the healthy and 

diseased group is identical. Hence, we have 

proved that, the eROC curve is TPR asymmetric.  

Asymptotic Distribution of Bi-Exponential ˆAUC  

and Confidence Interval for ˆAUC  

The area under the eROC curve is computed as  

0

0 1

AUC P(Y X) .


  
 

        (14) 

where λ0 and λ1 are the parameters of healthy and 

diseased group respectively. In order to compute the 

estimated AUC, we need to find the MLE’s of λ0 and 

λ1. In the following section, we will find the MLEs of 

λ0 and λ1. 

By substituting the ML estimates 0̂ and 1̂  we get 

the ML estimate of AUC i.e. 
n

j
j 1

m n

i j
i 1 j 1

m y
ˆAUC

n x m y



 



 





                       (15) 

 Now, we will derive the asymptotic 

distribution and confidence interval of AUC. To 

evaluate the significance of the statistic ˆAUC , we 

need to compute its variance and standard error. The 

following theorem evaluates the variance of the 

estimate, ˆAUC. 

Theorem 3.1: The area under the eROC curve will 

converge in distribution to a Normal random variable 

with mean zero and variance
2 2
0 1

4
1 0

(m n)

mn ( )

 

 
for 

large N( m n )   . 

Proof: 

 Let L( / x,y ) ; '
0 1( , )  

 
be the 

likelihood function of the sample observations from 

X and Y which is given by  
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m n

0 0 i 1 1 j
i 1 j 1

ln L m ln - x n ln - y
 

      
        (16)

 

Asymptotic normality of MLE’s, states that a 

consistent solution of the likelihood equation is 

asymptotically normally distributed about the true 

value  i.e.  1ˆ ~ N ,I ( ) .    

1ˆN( ) N(0,I ( )).            (17)
 

where I(θ) is the Fisher Information matrix which is 

given by 

 

2 2

2
0 10

2 2

2
1 0 1

ln L ln L
E E

I( )

ln L ln L
E E

 


  

     
           

   
    
                            

 (18)
 

where  

 

11 2
0

m
a ,


 22 2

1

n
a


 ,  12 21a a 0.   

The )(1 I is calculated as 

0 0 11

1 0 1

ˆ ˆ ˆV( ) Cov( , )
I ( )

ˆ ˆ ˆCov( , ) V( )

  


  


 

  
  

          

11

22

1
0

a
.

1
0

a

 
 
 
 
 
 

                                                     (19) 

  

 

where 
2
0

0 0 1m
ˆ ˆ ˆV( ) ,  Cov( , ) 0


    

2
1

1 0 1 n
ˆ ˆ ˆCov( , ) 0,V( ) .


    

                               (20)

 

 Since area under the ROC curve is a function of 

parameters '
10 ),(  , we will adopt the Delta 

method for finding the approximate variance. 
ˆV(AUC)can be defined as follows:  

2 2

0 1
0 1

0 1
0 1

AUC AUCˆ ˆV(AUC) V( ) V( )

AUC AUC ˆ ˆ                  2 Cov( , ).

    
       

   

    
    

   

                           

2 2
0 1

4
0 1

m n

mn( )

   
  

    

   (21) 

where
0

ˆV( ) , 1
ˆV( ) and 

0 1 1 0
ˆ ˆ ˆ ˆCov( , ) and Cov( , )     are 

taken from the equation (20). The estimate of 

variance is obtained by substituting the estimates of 

the parameters . , 10 
 

 The standard error of ˆAUC can be obtained 

by taking square root of ˆV(AUC) in equation (21). 

The 100(1-α) % confidence interval is obtained by  

2

ˆ ˆ[AUC SE(AUC)Z ]                        (22) 

where α is the level of significance and Zα/2 is the 

critical value. 

 It is observed that the asymptotic confidence 

interval do not perform well for small sample sizes. 

Hence, we propose the exact distribution of estimated 

AUC and confidence interval for small sample size in 

the following section. 

Exact Confidence interval for ˆAUC   

From Section 3, the ML estimate of AUC was 

found to be 

0

0 0

ˆ (m / U)ˆAUC
ˆ ˆ (m / U) (n / V)


 

 
                      (23) 

 

where 

 0 0m n

i j
i 1 j 1

m m n nˆ ˆand 
U V

x y
 

     

 

.                   

(24) 

It is well known that, if 
0X ~ Exp( )   then U follows 

gamma distribution with shape parameter m and scale 

parameter 0 and similarly V follows gamma 

distribution with shape parameter n and scale 

parameter .1  Hence, 2λ0V and 2λ1U are 

independently distributed as χ2 with 2m and 2n 

degrees of freedom.  

Lemma 1: Let δ1 and δ2 be independent χ2 random 

variables with m and n degrees of freedom 

respectively, the random variable [13] 

n/

m/
F

2

1




                                                     (25) 
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is said to have an F- distribution with (m, n) degrees 

of freedom. From the Lemma, it follows that, 

)n2 ,m2(F~
)n/V(

)m/U(

)n2/V2(

)m2/U2(
F

0

1

0

1









             (26) 

The 100(1-α) % confidence interval for AUC can be 

obtained from F distribution through  

l uP(F F F )  where Fl and Fu satisfies the condition  

where Fl and Fu satisfies the condition  

l uP(F F F . ) 1   

  
After a simple manipulation, the 100 (1-α)% 

confidence interval is found to be  

(2 m, 2n, /2) (2 m, 2n, 1- /2)

(2 m, 2n, /2) (2 m, 2n, 1- /2)

ˆ ˆAUC F AUC F
,  

ˆ ˆ ˆ ˆAUC F (1 AUC) AUC F (1 AUC)

 

 

 
 
     

                                 (27) 

where F2m, 2n,α/2 and F2m, 2n,1-α/2 are the lower and 

upper α/2th percentile points of F distribution with 2m 

and 2n degrees of freedom.  

 

Results and discussion 
Simulation Studies 

In this section, we provide the results of 

estimation of asymptotic, exact variance and 

confidence interval for AUC using simulated 

datasets.  

Asymptotic Variance Method 

 In this section, we did simulation studies to 

observe how the asymptotic variance of AUC 

behaves using simulated data sets. We have 

considered four different samples of size (m, n) = 

(30, 30) with different parametric values for λ0 = 

{0.0829, 0.1456, 0.2035, 0.4167} and λ1= {0.0466, 

0.0423, 0.0267, 0.0311}. The estimated 

parameters, ˆAUC, ˆSE(AUC), 95% Confidence 

Interval for ˆAUC  are shown in Table 1. 

From the Table 1, it is observed that, as the 

accuracy increases and the standard error decreases 

simultaneously.  The ROC curves for different 

parametric values are plotted in Figure 1. In table 2, 

we have simulated independent samples of m healthy 

and n diseased (m = n = 5, 10, 30, 60, 80) to assess 

the behavior of asymptotic variance and confidence 

interval by fixing λ0 and by varying λ1. Similarly, in 

Table 3, we have simulated independent samples of 

m healthy and n diseased of size (m = n = 5, 10, 30, 

60, 80) by fixing λ1 and varying λ0. In each row, the 

first element represents the test’s ˆAUC , second 

element (bolded) represents the ˆSE(AUC), third and 

fourth element represent the lower and upper 

confidence limit respectively. Figure 2 represents, the 

pattern of standard error with respect to the sample 

size by keeping 0  
constant as in Table 2 and Figure 

3 represents the pattern of standard error with respect 

to the sample size by keeping 1  constant as in Table 

3 by using asymptotic variance method. 

From Table 2 and 3, it is observed that 
ˆSE(AUC), decreases with increase in sample size 

and increase in accuracy. The behavior is depicted in 

Figure 2 and 3. It is observed that the asymptotic 

MLE do not perform well for small sample size. If 

we observe the lower confidence limit, it is crossing 

the lowest accuracy 0.5 which is not being considered 

as a good AUC estimate. As we mentioned earlier, if 

the curve reaches upper left corner of unit square then 

AUC is close to one. The topmost curve corresponds 

to the estimates ( 0̂ , 1̂ ) = (0.4001, 0.0305), the 

curve just below the topmost curve corresponds to 

(0.2134, 0.0238), the third curve from top 

corresponds to (0.1054, 0.0359) and the lowest curve 

corresponds to the estimates (0.0833, 0.0447). 

Figure 1: 

 
Bi-Exponential ROC curve for different  

parametric values  

Exact Variance Method 

In this section, we used the same parameters and 

estimated value to observe how the exact variance 

method behaves. The estimated parameters, 
ˆAUC, ˆSE(AUC), 95% Confidence Interval 

for ˆAUC, are shown in Table 4.  

In Table 5 and 6, the AUC and SE are analyzed 

by fixing one parametric value and varying the other 

and vice versa for different sample sizes and results 

are presented. 

By comparing Table 2 with Table 5 and Table 3 with 

Table 6, we observe that there is a considerable 

difference in the two method adopted. The exact 

variance method possesses a shorter confidence 

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

92%

89%

74%

65%
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interval when compared with asymptotic variance 

method.  

Figure 2: 
 

 
Standard error versus sample size 

Figure 3: 
 

 
 

Standard error versus sample size 

Real Life Example 

Biomarkers are extremely useful for detecting 

the disease at early stages. Prostate Specific Antigen 

(PSA) is a biomarker which is significant in detecting 

the prostate cancer.  For the application of proposed 

model, we consider the biomarker called total serum 

PSA. The data has been obtained from a Phase 3 

prostate cancer Case-Control study nested in the Beta 

Carotene [6]. The data used in this paper consisted 

randomly selected individuals who are affected by 

prostate cancer and 50 healthy individuals who were 

participated in a lung cancer prevention trial.   

First of all, let us evaluate the goodness of fit test 

for one parameter exponential distribution using 

Kolmogorov-Smirnov, Anderson-Darling and Chi-

Square statistics. The statistic and p-value for all the 

three procedures is shown in Table 7. 

For healthy marker values, the probabilities of 

the modeled K-S (0.1342), A-D (0.9977) and Chi-

Square (6.2572) was greater than or equal to the level 

of significance of 20% (0.2000). Hence, there is no 

evident that the null hypothesis “The healthy marker 

values fits the one parameter Exponential 

distribution” to be rejected. Similarly in diseased 

group, the p-values of the modeled statistics were 

greater than the level of significance of 10% 

(0.1000). Hence, we conclude that the diseased 

marker values fit the assumed Exponential 

distribution. 

The estimated parameters are 0  2.3086 and 

1 
 
0.6479. Hence the AUC, standard errors using 

asymptotic MLE and exact variance methods are 

estimated as 0.7799, 0.034498 and 0.034477 

respectively. The 95% asymptotic and exact 

confidence intervals for estimated AUC are 

constructed as [0.7123, 0.8476] and [0.7133, 0.8484] 

respectively. From the result, it is obvious that the 

asymptotic MLE method and exact variance method 

both performs in the similar way. The sensitivity and 

specificity of the marker are found to be 71% and 

71% respectively at the threshold value of 0.534. 

From the sensitivity and specificity rates, we infer 

that an individual whose is having the “ratio of free 

to total PSA” marker value greater than 0.534 are 

71% likely to be detected with the prostate cancer. 

Similarly, an individual having the marker value less 

than 0.534 are 71% likely to be not having the 

prostate cancer. The ROC curve plotted is plotted for 

the PSA marker and the asymmetric property of the 

ROC curve is also studied which is shown in Figure 

6.  

The line  segment connecting (0,1) and (1,0) is 

called the negative chace line and it is obtained by 

plotting FPR on X-axis and 1-FPR on Y-axis. The 

dashed vertical line segment let us call it as S1 

corresponds to the co-ordinate [FPR=a (0.08, say), 0 

≤ TPR ≤ 1]. The dashed horizontal line (S2) segment  

corresponds to the co-ordinate [0 ≤ FPR ≤ 1, TPR=1-

a (0.95)]. Let A=[a,0.5], B=[0.5, 1-a] and C=[a*>a, 1- 

a*]. A ROC curve is said to be symmetric if it passes 

through the co-ordinate A, B and C. Any ROC curve 

is said be TPR asymmetric if it passess through S2 

after the co-ordinate B and the one that passes though 

S2 before the co-ordinate B is called TNP 

asymmetric. Thus from Figure 6, it is proved that the 

Bi-Exponential ROC curve is TPR asymmetric 

graphically. From equation (3) and (4), the K-L 

divergence measures 

KL(g,f)(1.2927) KL(f,g)(0.5514)   

Hence, the eROC curve is TPR asymmetry is proved 

numerically. 
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Conclusion 
Some of the properties of the Bi-Exponential 

ROC model have been studied. It was found that Bi-

Exponential ROC curve satisfies some common 

properties like monotonicity and invariance property. 

It also satisfies some specific properties like 

concavity and TPR asymmetric. We have developed 

two methods to estimate the variance of Bi-

Exponential AUC namely asymptotic variance 

method and exact variance method. The 100(1-α) % 

confidence interval for AUC using both method have 

been computed. Through extensive simulation studies 

and by looking at the real life example, we found that 

exact variance methods perform slightly better than 

the asymptotic variance method. Each of the method 

has to be adopted according to the specific conditions 

i.e. asymptotic variance can be adopted if the sample 

size is large else one can go for exact variance. 
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Table 1 ˆ ,AUC ˆ( )SE AUC and 95% confidence interval for ˆAUC based  

on eROC through asymptotic variance method 

S.N. ˆ
0  1̂  

ˆAUC  ˆSE(AUC)  95% Confidence 

Interval 

1 0.0833 0.0447 0.6508 0.0587 [0.5358, 0.7658] 

2 0.1054 0.0359 0.7458 0.0489 [0.6499, 0.8418] 

3 0.2134 0.0238 0.8996 0.0233 [0.8540, 0.9453] 

4 0.4001 0.0305 0.9292 0.0170 [0.8959, 0.9645] 

 

Table 2 ˆAUC , ˆSE(AUC) , 95% confidence interval for ˆAUC by fixing λ0=0.0829 and varying λ1 

Sample Size 

1̂  
(5,5) (10,10) (30,30) (60,60) (80,80) 

0.0466 

0.6402 

0.1457 

[0.3546, 

0.9257] 

0.6402 

0.1030 

[0.4382, 

0.8421] 

0.6402 

0.0595 

[0.5236, 

0.7567] 

0.6402 

0.0421 

[0.5577, 

0.7226] 

0.6402 

0.0364 

[0.5688, 

0.7115] 

0.0293 

0.7389 

0.1220 

[0.4997 

0.9780] 

0.7389 

0.0863 

[0.5697 

0.9080] 

0.7389 

0.0498 

[0.6412 

0.8365] 

0.7389 

0.0352 

[0.6698 

0.8079] 

0.7389 

0.0305 

[0.6791 

0.7987] 

0.0125 

0.8689 

0.0720 

[0.7278 

1.0000] 

0.8689 

0.0509 

[0.7692 

0.9688] 

0.8689 

0.0294 

[0.8114 

0.9266] 

0.8689 

0.0208 

[0.8282 

0.9097] 

0.8689 

0.0180 

[0.8337 

0.9043] 

0.0056 

0.9367 

0.0375 

[0.8632 

1.000] 

0.9367 

0.0265 

[0.8848 

0.9887] 

0.9367 

0.0153 

[0.9067 

0.9667] 

0.9367 

0.0108 

[0.9155 

0.9579] 

0.9367 

0.0094 

[0.9184 

0.9551] 
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Table 3 ˆAUC , ˆSE(AUC) , 95% confidence interval for ˆAUC  by fixing λ1 = 0.0466 and varying λ0 

Sample Size 

ˆ
0  

(5,5) (10,10) (30,30) (60,60) (80,80) 

0.0829 

0.6402 

0.1457 

[0.3546 

0.9257] 

0.6402 

0.1030 

[0.4382 

0.8421] 

0.6402 

0.0595 

 [0.5236 

0.7567] 

0.6402 

0.0421 
 [0.5577 

0.7226] 

0.6402 

0.0364 

[0.5688 

0.7115] 

0.1278 

0.7328 

0.1238 

[0.4901 

0.9755] 

0.7328 

0.0876 

[0.5612 

0.9044] 

0.7328 

0.0506 

[0.6337 

0.8319] 

0.7328 

0.0358 

[0.6627 

0.8029] 

0.7328 

0.0310 

[0.6721 

0.7935] 

0.2056 

0.8152 

0.0953 

[0.6285 

1.0000] 

0.8152 

0.0674 

[0.6832 

0.9473] 

0.8152 

0.0389 

[0.7390 

0.8915] 

0.8152 

0.0275 

[0.7613 

0.8691] 

0.8152 

0.0238 

[0.7685 

0.8619] 

0.5562 

0.9227 

0.0451 

[0.8343 

1.0000] 

0.9227 

0.0319 

[0.8602 

0.9852] 

0.9227 

0.0184 

[0.8866 

0.9588] 

0.9227 

0.0130 

[0.8972 

0.9482] 

0.9227 

0.0113 

[0.9006 

0.9448] 

 

Table 4 ˆAUC , ˆSE(AUC) , 95% confidence interval for ˆAUC  

based on Bi-Exponential ROC through exact variance method 

S.N. 
0̂  1̂  

ˆAUC  95% Confidence 

Interval 

1 0.0833 0.0447 0.6508 [0.5279, 0.7545] 

2 0.1054 0.0359 0.7458 [0.6377, 0.8302] 

3 0.2134 0.0238 0.8996 [0.8432, 0.9373] 

4 0.4001 0.0305 0.9292 [0.8873, 0.9563] 

 

Table 5 ˆAUC , ˆSE(AUC) , 95% confidence interval for ˆAUC  by fixing λ0 and varying λ1 

Sample Size 

1  
(5,5) (10,10) (40,40) (50,50) (80,80) 

0.0466 

0.6402 

[0.3237 

0.8686] 

0.6402 

[0.4192 

0.8143] 

0.6402 

[0.5163 

0.7478] 

0.6402 

[0.5539 

0.7182] 

0.6402 

[0.5838 

0.6929] 

0.0293 

0.7389 

[0.4322 

0.9132] 

0.7389 

[0.5345 

0.8746] 

0.7389 

[0.6293 

0.8251] 

0.7389 

[0.6638 

0.8021] 

0.7389 

[0.6905 

0.7821] 

0.0125 

0.8689 

[0.6409 

0.9822] 

0.8689 

[0.7291 

0.9420] 

0.8689 

[0.7992 

0.9170] 

0.8689 

[0.8223 

0.9048] 

0.8689 

[0.8395 

0.8938] 

0.0056 

0.9367 

[0.7990 

0.9820] 

0.9367 

[0.8573 

0.9733] 

0.9367 

[0.8988 

0.9611] 

0.9367 

[0.9118 

0.9550] 

0.9367 

[0.9212 

0.9494] 
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Table 6 ˆAUC , ˆSE(AUC) , 95% confidence interval for ˆAUC  by fixing λ1 = 0.0466 and varying λ0 

Sample Size 

0  
(5,5) (10,10) (30,30) (60,60) (80,80) 

0.0829 

0.6402 

 [0.3237 

0.8686] 

0.6402 

 [0.4190 

0.8143] 

0.6402 

 [0.5063 

0.7478] 

0.6402 

 [0.5539 

0.7182] 

0.6402 

 [0.5838 

0.6929] 

0.1278 

0.7328 

 [0.4246 

0.9107] 

0.7328 

 [0.5267 

0.8711] 

0.7328 

 [0.6220 

0.8205] 

0.7328 

 [0.6569 

0.7971] 

0.7328 

 [0.6838 

0.7767] 

0.2056 

0.8152 

 [0.5428 

0.9425] 

0.8152 

 [0.6416 

0.9158] 

0.8152 

 [0.7258 

0.8803] 

0.8152 

 [0.7549 

0.8634] 

0.8152 

 [0.7767 

0.8484] 

0.5562 

0.9227 

 [0.7654 

0.9780] 

0.9227 

 [0.8289 

0.9671] 

0.9227 

 [0.8775 

0.9520] 

0.9227 

 [0.8928 

0.9448] 

0.9227 

 [0.9039 

0.9380] 

 

Table 7 Results of Goodness of Fit test 

 Test Statistic P-value Rank α % 

Healthy 

Kolmogorov-Smirnov 0.1342 0.3016 35 20, 10, 5, 2, 1 

χ2 6.2572 0.2820 36 20, 10, 5, 2, 1 

Anderson- Darling 0.9977 - 29 20, 10, 5, 2, 1 

Diseased 

Kolmogorov-Smirnov 0.1422 0.2404 28 20, 10, 5, 2, 1 

χ2 6.3019 0.2779 23 20, 10, 5, 2, 1 

Anderson- Darling 1.833 - 28 10, 5, 2, 1 
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